/Room-temperature superconductivity in a carbonaceous sulfur hydride – Nature.com

Room-temperature superconductivity in a carbonaceous sulfur hydride – Nature.com


  • 1.

    Onnes, H. K. The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden 12, 1 (1911).


    Google Scholar
     

  • 2.

    Ginzburg, V. L. Nobel Lecture: on superconductivity and superfluidity (what I have and have not managed to do) as well as on the “physical minimum” at the beginning of the XXI century. Rev. Mod. Phys. 76, 981–998 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-T
    c superconductivity. Sci. Rep. 4, 6968 (2014).

    CAS 

    Google Scholar
     

  • 7.

    Strobel, T. A., Ganesh, P., Somayazulu, M., Kent, P. R. C. & Hemley, R. J. Novel cooperative interactions and structural ordering in H2S–H2. Phys. Rev. Lett. 107, 255503 (2011).

    ADS 

    Google Scholar
     

  • 8.

    Bi, T., Zarifi, N., Terpstra, T. & Zurek, E. The search for superconductivity in high pressure hydrides. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering https://doi.org/10.1016/B978-0-12-409547-2.11435-0 (Elsevier, 2019).

  • 9.

    Sun, Y., Lv, J., Xie, Y., Liu, H. & Ma, Y. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett. 123, 097001 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Pickard, C. J., Errea, I. & Eremets, M. I. Superconducting hydrides under pressure. Annu. Rev. Condens. Matter Phys. 11, 57–76 (2020).

    CAS 

    Google Scholar
     

  • 11.

    Shimizu, K., Suhara, K., Ikumo, M., Eremets, M. I. & Amaya, K. Superconductivity in oxygen. Nature 393, 767–769 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Struzhkin, V. V., Hemley, R. J., Mao, H. & Timofeev, Y. A. Superconductivity at 10–17 K in compressed sulphur. Nature 390, 382–384 (1997).

    ADS 

    Google Scholar
     

  • 13.

    Dias, R. P. et al. Superconductivity in highly disordered dense carbon disulfide. Proc. Natl Acad. Sci. USA 110, 11720–11724 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Kim, D. Y., Scheicher, R. H., Mao, H., Kang, T. W. & Ahuja, R. General trend for pressurized superconducting hydrogen-dense materials. Proc. Natl Acad. Sci. USA 107, 2793–2796 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Tanaka, K., Tse, J. S. & Liu, H. Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure. Phys. Rev. B 96, 100502 (2017).

    ADS 

    Google Scholar
     

  • 16.

    Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1749 (1968).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Dias, R. P. & Silvera, I. F. Observation of the Wigner–Huntington transition to metallic hydrogen. Science 355, 715–718 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Eremets, M. I., Drozdov, A. P., Kong, P. P. & Wang, H. Semimetallic molecular hydrogen at pressure above 350 GPa. Nat. Phys. 15, 1246–1249 (2019).

    CAS 

    Google Scholar
     

  • 19.

    Zaghoo, M., Salamat, A. & Silvera, I. F. Evidence of a first-order phase transition to metallic hydrogen. Phys. Rev. B 93, 155128 (2016).

    ADS 

    Google Scholar
     

  • 20.

    Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl Acad. Sci. USA 109, 6463–6466 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high-T
    c superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl Acad. Sci. USA 114, 6990–6995 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).

    ADS 

    Google Scholar
     

  • 23.

    Errea, I. et al. High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015).

    ADS 

    Google Scholar
     

  • 24.

    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Cui, W. et al. Route to high-Tc superconductivity via CH4-intercalated H3S hydride perovskites. Phys. Rev. B 101, 134504 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Sun, Y. et al. Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation. Phys. Rev. B 101, 174102 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Einaga, M. et al. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12, 835–838 (2016).

    CAS 

    Google Scholar
     

  • 28.

    Little, W. A. Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416–A1424 (1964).

    ADS 

    Google Scholar
     

  • 29.

    Ginzburg, V. L. On surface superconductivity. Phys. Lett. 13, 101–102 (1964).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 310 GPa. J. Appl. Phys. 100, 043516 (2006).

    ADS 

    Google Scholar
     

  • 31.

    Hsieh, S. et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 366, 1349–1354 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Lesik, M. et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers. Science 366, 1359–1362 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Yip, K. Y. et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science 366, 1355–1359 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Mozaffari, S. et al. Superconducting phase diagram of H3S under high magnetic fields. Nat. Commun. 10, 2522 (2019).

    ADS 

    Google Scholar
     

  • 35.

    Eckert, B. & Schumacher, R., Jodl, H. J. & Foggi, P. Pressure and photo-induced phase transitions in sulphur investigated by Raman spectroscopy. High Press. Res. 17, 113–146 (2000).

    ADS 

    Google Scholar
     

  • 36.

    Somayazulu, M. S., Finger, L. W., Hemley, R. J. & Mao, H. K. High-pressure compounds in methane-hydrogen mixtures. Science 271, 1400–1402 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Kearney, J. S. C. et al. Pressure-tuneable visible-range band gap in the ionic spinel tin nitride. Angew. Chem. Int. Ed. 57, 11623–11628 (2018).

    CAS 

    Google Scholar
     

  • 38.

    Spiekermann, G. et al. Persistent octahedral coordination in amorphous GeO2 up to 100 GPa by Kβ″ X-ray emission spectroscopy. Phys. Rev. X 9, 011025 (2019).

    CAS 

    Google Scholar
     

  • 39.

    Dias, R. P., Noked, O. & Silvera, I. F. Quantum phase transition in solid hydrogen at high pressure. Phys. Rev. B 100, 184112 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Dias, R. P., Noked, O. & Silvera, I. F. New phases and dissociation-recombination of hydrogen deuteride to 3.4 Mbar. Phys. Rev. Lett. 116, 145501 (2016).

    ADS 

    Google Scholar
     

  • 41.

    Frank, R. B. in Mössbauer Effect Methodology 151–180 (Springer, 1976).

  • 42.

    Debessai, M., Hamlin, J. J. & Schilling, J. S. Comparison of the pressure dependences of T
    c in the trivalent d-electron superconductors Sc, Y, La, and Lu up to megabar pressures. Phys. Rev. B 78, 064519 (2008).

    ADS 

    Google Scholar
     

  • 43.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 44.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 45.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS 

    Google Scholar
     

  • 46.

    Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).


    Google Scholar
     

  • 47.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    ADS 

    Google Scholar
     

  • 49.

    Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS 

    Google Scholar
     

  • 50.

    Froyen, S. & Cohen, M. Structural properties of NaCl and KCl under pressure. J. Phys. C 19, 2623–2632 (1986).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Dacosta, P. G., Nielsen, O. H. & Kunc, K. Stress theorem in the determination of static equilibrium by the density functional method. J. Phys. C 19, 3163–3172 (1986).

    ADS 

    Google Scholar
     

  • 52.

    Vanderbilt, D. Absence of large compressive stress on Si(111). Phys. Rev. Lett. 59, 1456–1459 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 53.

    Francis, G. P. & Payne, M. C. Finite basis set corrections to total energy pseudopotential calculations. J. Phys. Condens. Matter 2, 4395–4404 (1990).

    ADS 

    Google Scholar
     

  • 54.

    Hazen, R. M., Mao, H. K., Finger, L. W. & Bell, P. M. Structure and compression of crystalline methane at high pressure and room temperature. Appl. Phys. Lett. 37, 288–289 (1980).

    ADS 
    CAS 

    Google Scholar
     

  • 55.

    Zhou, D. et al. Elastic properties of single crystal hydrogen sulfide: a Brillouin scattering study under high pressure-temperature. J. Appl. Phys. 124, 125901 (2018).

    ADS 

    Google Scholar
     

  • 56.

    Pratesi, G., Ulivi, L., Barocchi, F., Loubeyre, P. & Le Toullec, R. Hyperacoustic velocity of fluid hydrogen at high pressure. J. Phys. Condens. Matter 9, 10059–10064 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Darkrim, F. & Levesque, D. Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J. Chem. Phys. 109, 4981–4984 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Somayazulu, M. S., Finger, L. W., Hemley, R. J. & Mao, H. K. High-pressure compounds in methane-hydrogen mixtures. Science 271, 1400–1402 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Pace, E. J. et al. Properties and phase diagram of (H2S)2H2. Phys. Rev. B 101, 174511 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Das, A. et al. The H2S dimer is hydrogen-bonded: direct confirmation from microwave spectroscopy. Angew. Chem. Int. Ed. 57, 15199–15203 (2018).

    CAS 

    Google Scholar
     

  • 61.

    Bernal, J. D. & Fowler, R. H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933).

    ADS 
    CAS 

    Google Scholar
     

  • Original Source